5.4 QUESTIONS PART 2 MS

1.	(a)	Homogeneous same phase as reactants (1)		
		Most important mechanistic feature change of oxidation state (1)	2	
	(b)	(i) $2\Gamma + S_2O_8^{2-} \rightarrow I_2 + 2SO_4^{2-}$ (1)		
		(ii) negative ions repel (1)		
		(iii) Equation 1 $2Fe^{3+} + 2I^- \rightarrow I_2 + 2Fe^{2+}$ (1)		
		Equation 2 $2Fe^{2+} + S_2O_8^{2-} \rightarrow 2SO_4^{2-} + 2Fe^{3+}$ (1)	4	
	(c)	(i) Identity of metal 1 W (1)		
		<i>Reason for low efficiency</i> adsorption too strong (1)		
		Identity of metal 2 Ag (1)		
		<i>Reason for low efficiency</i> adsorption too weak (1)		
		(ii) Ease of adsorption (not too weak) and desorption (not too strong)		
		balance out (1)	5	
	(d)	Catalyst Pt or Rh or Pt/Rh (1)		
		Identity of reductant CO (1)		
		Equation $2CO + 2NO \rightarrow N_2 + 2CO_2$ (1)	3	
				[14]
2.	(a)	A catalyst in the same phase/phase as the reactants	1	
2.	(a) (b)	(i) A reaction in which a product acts as a catalyst	1	
	(0)	(ii) Mn^{2+} or Mn^{3+}		
		"Self-catalysing" not allowed	1	
	(c)	(i) $2CO + 2NO \rightarrow 2CO_2 + N_2$	1	
		or $4CO + 2NO_2 \rightarrow 4CO_2 + N_2$		
		C not allowed as a product		
		Reducing agent CO	1	
		(ii) Pt, Pd or Rh	1	
		Deposited on a ceramic honeycomb or matrix or mesh or sponge	1	
		To increase surface area of catalyst	1	
	(d)	(i) Reactants cannot move on surface or products not desorbed or Active sites blocked	1	
		(ii) Reactants not brought together or	1	
		No increase in reactant concentration on catalyst surface or Reactants not held long enough for a reaction to occur or		
		Reactant bonds not weakened		[40]
				[10]

3.			crease the rat	te of the forward and backwards reactions (1) nt (1)		
		(ii)	Equation Catalyst	$N_2 + 3H_2 \rightleftharpoons 2NH_3$ (or other industrial process) (1) Iron (1)	4	[4]
4.	(a)	(i)		→ FeCl ₂ + H ₂ (allow ionic formulae) \rightarrow Fe ²⁺ + H ₂	1	
		<i></i>		-	1	
		(ii)		n = PV/RT (allow either formula but penalise contradiction) $0 \times 102 \times 10^{-6}$ 31×298	1 1	
			$= 4.53 \times 10^{10}$		1	
		(iii)		$cn = 4.5(3) \times 10^{-3} mol$ w conseq on (a)(ii))		
			Mass of iro	× 10^{-3} if candidate uses given moles of hydrogen) n = 4.53 × 10^{-3} × 55.8 = 0.253 g method mass = moles × A_r)	1	
				on can be 56)	1	
		(iv)	(allow	D/0.263 = 96.1 % (mark is for answer to 2 sig. figs.) w conseq on mass of iron. E.g. = 90% from $D \times 10^{-3}$ moles of H_2 and Fe)	1	
			(Do r	not allow answers greater than or equal to 100%)		
	(b)	(i)	$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3}$	$^{+}$ + e ⁻ (ignore state symbols)	1	
		_	,	$6e^- \rightarrow 2Cr^{3+} + 7H_2O$	1	
		Cr_2O	$97^{2-} + 14H^{+} + 14H^{+}$	$6Fe^{2+} \rightarrow 2Cr^{3+} + 7H_2O + 6Fe^{3+}$	1	
		(ii)		chromate = moles Fe ²⁺ /6 w conseq, mark is for method (a)(iii)/6)		
			Volume of	$^{-3}/6 = 7.55 \times 10^{-4}$ dichromate = moles/concentration k is for this method)	1	
			(= (7.55 × 1	$0^{-4} \times 1000)/0.0200)$	1	
			V = 37.75 ((allow	cm ³) w 37.7 to 37.8, allow no units but penalise wrong units)	1	
				w conseq on moles of dichromate)		
				lue of 3.63×10^{-3} used answer is 30.2 to 30.3, wise ans = moles $Fe^{2+}/0.00012$)		
				ole ratio wrong and candidate does not divide by 6, score is ONE for volume method)		
		(iii)	(KMnO ₄) w	vill also oxidise (or react with) Cl^- (or chloride or HCl)	1	[14]

[14]

5.	(a)	(i) NaOH (or KOH)	1
		(ii) $+6$ (or 6 or +VI or VI)	1
		(iii) H ₂ O ₂	
		$(\text{orNa}_2\text{O}_2 \text{ or } \text{BaO}_2)$	1
		$[Cr(OH)_6]^{3-} + 2OH^- \rightarrow CrO_4^{2-} + 4H_2O + 3e^-$ (or [Cr(OH)_6]^{3-} \rightarrow CrO_4^{2-} + 2H_2O + 2H^+ + 3e^-)	1
	(b)	$[Cr(H_2O)_6]^{2+}$	1
		Reducing agent (mark independently)	1
	(c)	(i) ethanal (or CH_3CHO) (not CH_3COH)	1
		(ii) Ethanoic acid (or correct formula)	1 [8]
6.	(a)	(i) Orange	1
		(ii) Red-violet/ruby/violet/ green	1
		(ii) Purple	1
	(b)	(i) MnO_{4}^{-}/Mn^{2+} has a more positive E^{Θ} value than Cl_{2}/Cl^{-} or data used	1
		and will oxidise Cl^- or change Cl^- to Cl_2 Allow converse answers	1
		(ii) NO_3^-/HNO_2 has a more positive E^{Θ} value than Fe^{3+}/Fe^{2+} or data used	1
		and will oxidise Fe^{2+} or change Fe^{2+} to Fe^{3+}	1
			[7]
7.	(a)	Metal 1 W, Zr, Nb, Mo, Hf or Ta (1)	
		<i>Explanation</i> Adsorb too strongly (1)	
		Products not desorbed or no movement or catalyst surface (1)	
		Metal 2 Ag, or Au (1)	
		<i>Explanation</i> Adsorbs too weakly (1)	
		Reactants not brought together or no increase in concentration of reactants on surface (1)	6
	(b)	(i) Catalyst provides an alternative route (1)	
		with a lower activation energy (1)	
		(ii) Esterification $\begin{vmatrix} I^- + S_2 O_8^{2-} \\ H_2 SO_4 / acid \end{vmatrix} \begin{vmatrix} I^- + S_2 O_8^{2-} \\ Fe^{2+} / Fe^{3+} \end{vmatrix} \begin{vmatrix} SO_2 + O_2 \\ NO \end{vmatrix} \begin{vmatrix} O_3 \\ Cl \end{vmatrix}$	4 (1) 4
		$H_2SO_4/acid$ Fe^{2+}/Fe^{3+} NO Cl ·	(1)
			[10]

8. gains electrons (1) (a) (b) V_2O_5 (1) $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ (1) 2 mix reagents, time some observation e.g. disappearance of colour (1) (c) repeat with added Mn^{2+} (1) shorter time shows catalysis (1) 3 (d) H_2O_2 (1) NaOH (1) (i) (ii) (iii) Zn (1) HCl (1) or dil_{1}/H_2SO_4 6 [12] 9. (a) (i) Alternative / different route / mechanism (1) Lower activation energy / Ea (1) Do not allow Surface effect or Change Ox.St or no change in mass/state (ii) Variable oxidation states (1) Not incomplete d - shells $C_2O_4^{2-}/MnO_4^-$ or NaK Tartrate/H₂O₂ (1) $S_2O_8^{2-}$ (iii) OR Co²⁺/Co³⁺ Fe^{2+}/Fe^{3+} Mn^{2+} (1) Reagents with correct names or formulae Allow the catalysts if reaction essentially correct Do not allow metallic elements 5 Reactants/chemicals in a different state/phase (to the catalyst) (1) (b) (i) Or More than one state/phase (ii) Surface adsorption/adsorption (onto the catalyst) (1) Penalise absorption Reaction/equivalent (on surface) (1) Allow correct statement e.g. bonds weakened, conc. increased (Products) desorbed (from surface) (1) Steps must be in the correct order 4 Iron Not Fe^{2+} or $\operatorname{Fe}^{3+}(1)$ (c) (i) S; H_2S ; CO; CO₂ or H_2O but not 'sulphide' (1) (ii) <u>Blocks</u> active sites or <u>not desorbed</u> (1) i.e. need a clear indication of irreversibility Mark explanation separately 3 [12]

1

10.	(a)	(i)	+6 or 6 or 6+ not Cr ⁶⁺ (1)	1	
		(ii)	$\underline{1} \operatorname{Cr}^{3+} + \underline{8} \operatorname{OH}^{-} \longrightarrow \underline{1} \operatorname{CrO}_{4}^{2-} + \underline{4} \operatorname{H}_{2} \operatorname{O} + \underline{3} \operatorname{e}^{-}$		
			(<u>1</u> need not be shown)		
			allow multiples (1)	1	
	(b)	(i)	$2\text{CrO}_4^{2-} + 2\text{H}^+ \rightarrow \text{Cr}_2\text{O}_7^{2-} + \text{H}_2\text{O}$ allow multiples (1)	1	
		(ii)	yellow (1)		
			orange (1)	2	
			mark these colours independently		[40]
					[12]
11.		FeSO	$O_4/SO_2/H_2O_2/Fe/stated aldehyde 1^y \text{ or } 2^y \text{ ROH } (1)$ acid <u>or</u> dil H_2SO_4 (above) (1) $Cr_2O_7^{2^-} + 14H^+ + 6Fe^{2^+} \rightarrow 2Cr^{3^+} + 7H_2O + 6Fe^{3^+}$ (2) <u>or</u> two half-equations		
		Zn (1	1) HCl <u>or</u> dil H ₂ SO ₄ (1)		
		abse	nce of air (1)		
			$D_7^{2-} + 14H^+ + 4Zn \rightarrow 2Cr^{2+} + 7H_2O + 4Zn^{2+}$ (2)	0	
		<u>or</u> tv	vo half-equations	9	[9]
12.	(a)	If ad	sorption too weak reactants not brought together (1) sorption too strong products not desorbed OR		
			tants cannot move on surface of catalyst (1)	2	
	(b)		ctants need to be correctly orientated (1)	1	
	(c)	(i)	The reaction has a high activation energy (1)		
		(ii)	$SO_2 + NO_2 \rightarrow SO_3 + NO (1)$ 2NO + O ₂ \rightarrow 2NO ₂ (1)	3	
			$2100 + 02 \rightarrow 21002$ (1)	5	[6]
13.	(a)	(i)	speeds rate (1)		
			unchanged at end (1)		
			new route (1) <u>or</u> lower AE		
		(ii)	Same phase (state) (1)		
		(iii)	+1 (1)		
			4 (1)		
		(iv)	lone pair (1)	7	

	(b)	(i) $(i) + H_2 \longrightarrow (i)$		
		$\underline{\text{or}} C_6 H_{10} + H_2 \rightarrow C_6 H_{12}$		
		(ii) $Reagent(s)$ $Br_2 \text{ or } KMnO_4 (1)$		
		Observation(s) no change (1)		
		(iii) Variable oxidation state (1)	4	F4 4 1
				[11]
14.	(a)	e.g. Homogeneous: catalyst in same phase (1) as reactant (1)	2	
	(b)	Minimum energy (1)	2	
		For a <u>reaction</u> to occur (1) (i) between (1)	2	
	(c)	 (i) Homogeneous or heterogeneous hetrogeneous (1) Explanation of Catalysis favourable orientations, weakening bonds, increased surface concentrations etc. <u>ANY TWO</u> (2) 		
		[Or the alternative		
		Vanadium catalyst changes oxidation state (1) $SO_2 + V_2O_5 \rightarrow SO_3 + V_2O_4$		
		$2V_2O_4 + O_2 \rightarrow 2V_2O_5$ (1)]		
		 (ii) homogeneous or heterogeneous (1) lock and key, favourable orientations, weakening bonds, increased concentrations etc. <u>ANY TWO</u> (2) 	6	
	(d)	<i>Meausre 1</i> increase surface area of catalyst (1)		
		Meausre 2 remove catalyst poisons from reactants (1)	2	[12]
15.	(a)	Dilute sulphuric acid (1)		
		Colourless to pink or purple or red (1)	2	
	(b)	$\mathrm{Fe}^{2+} \to \mathrm{Fe}^{3+} + \mathrm{e}^{-} (1)$		
		$MnO_4^- + 8^{H_+} 5e^- \rightarrow Mn^{2+} + 4H_2O$ (1)		
		$5 \text{ Fe}^{2+} + \text{MnO}_{4}^{-} + 8\text{H}^{+} \rightarrow 5 \text{ Fe}^{3+} + \text{Mn}^{2+} + 4\text{H}_2\text{O}$ (1)	3	
	(c)	Mol KMnO ₄ = $25 \times 0.02/1000$ = 5×10^{-4} (1)		
		Mol Fe ²⁺ = $5 \times 5 \times 10^{-4}$ = 2.5×10^{-3} (1)		
		Mr compound = 392 (1)		
		Mass = mol × Mr = $2.5 \times 10^{-3} \times 392$ = 0.98g (1)		
			4	
				[9]

16. (a) (i)
$$[Cu(H_2O)_6]^{2+}(1)$$
 1
(ii) $[Cr(H_2O)_6]^{3+}(1)$ 1

	(b)	(i)	$MO_4^{-}(1)$	1	
		(ii)	$Cr_2O_7^{2-}(1)$	1	
	(c)	(i)	purple solution / manganate(VII) in burette - permanganate, MnO_4^- acceptable (1)		
			to flask add dilute H_2SO_4 / (strong) acid / $H^+(1)$		
			not HCl, HNO ₃ , CH ₃ COOH, nor H ₂ SO ₄		
			pipette known quantity of ethanedioate into conical flask (1)		
			warm ($\geq 50^{\circ}$ C if temperature specified) (1)		
			add manganate(VII) from burette until first pink/purple colour (1)	max 5	
			repeat until concordant results (1)		
			(*) if chemicals reversed mark as appropriate		
		(ii)	$2MnO_{4}^{-} + 16H^{+} + 5C_{2}O_{4}^{2-} \rightarrow 2Mn^{2+} + 8H_{2}O + 10CO_{2} (1)$		
			all correct ions		
			balanced (1)	2	
	(e)	(i)	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{6}4s^{2}$ (3d ⁶ 4s ² can be reversed) (1)	1	
		(ii)	lose two $4s^2$ elections (1)		
			can lose another to give half full shell (1)	2	F.4.43
					[14]
17.	(a)	home	ogeneous = same phase		
		heter	ogeneous = different phase		
		appli	es to reactants and catalyst	1	
	(b)	to ma	aximize surface area (1)		
		and r	minimise cost (1)	2	
	(c)	react	ion between ions of same charge has high E_a (1)		
		$2 \mathrm{Fe}^3$	$^{3+}(aq) + 21^{-}(aq) \rightarrow 1_{2}(aq) + 2Fe^{2+}(aq)$ (1)		
		2 Fe^2	$^{2+}(aq) + S_2O_8^{2-}(aq) \rightarrow 2SO_4^{2-}(aq) + 2Fe^{3+}(aq)$ (1)		
		if Fe	$^{2+}$ ions are added, oxidation gives Fe ³⁺ and vice versa (1)	4	
	(d)	(i)	surface adsorption OR <u>active sites</u> (1)		
			bond weakening OR favourable orientations		
			OR increase in surface concentration (any 2) [2]		
		(ii)	e.g N ₂ (g) + 3H ₂ (g) \rightarrow 2NH ₃ (g)		
			$e.g 2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$		
			OR any other suitable examples [2]	5	
					[12]

18.

(a)

High E_a : $S_2O_8^{2-}$ repels I⁻ or both ions negative (1) $2Fe^{2+} + S_2O_8^{2-} \rightarrow 2Fe^{3+} + 2SO_4^{2-}$ (1) $2Fe^{3+} + 2\Gamma \rightarrow 2Fe^{2+} + I_2$ (1)

N.B. Ignore additional incorrect equations

Vanadium is a transition element or Magnesium is not a transition element (1)

Vanadium has variable oxidation states (1)

Magnesium only forms Mg²⁺, or has only one oxidation state (1) N.B. Score two marks for "Only vanadium has variable oxidation states"

[6]

6

10

19. (a) (i) $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$ all species correct (1) balance (1)

 Mn^{2+} is catalyst (1)

none present at first \therefore slow <u>or</u> more present later \therefore faster (1) autocatalysis <u>or</u> different route of lower AE (1)

(ii) 2 anions reacting together (1) } Fe²⁺ catalyst or lowers AE (1) } because variable oxidation state (1) } 2Fe²⁺ + S₂O₈²⁻ \rightarrow 2Fe³⁺ + 2SO₄²⁻ (1) } 2Fe³⁺ + 2\Gamma \rightarrow 2Fe²⁺ + I₂ (1) }

Mg no variable O.S. or higher O.S.

or Mg^{2+} can't be oxidised/reduced (1)

(b) moles
$$MnO_4^- = \frac{27.5 \times 0.02}{1000} = 5.5 \times 10^{-4}$$

(1)

moles Mo = $\frac{5}{3} \times 5.5 \times 10^{-4}$ (1) wrong ratio = max 2 (marks 1 & 3) g Mo = $96 \times \frac{5}{3} \times 5.5 \times 10^{-4}$ (1) % Mo = $\frac{96 \times 5 \times 5.5 \times 10^{-4}}{3 \times 0.33} \times 10^{2}$ (1) = 26.7 (1)

26.6 if Mo = 95.9 used

5

20.	(a)	effect on reaction rate:	catalyst provides an alternative reaction route.; with a lower E_a ;	1 1	
			more molecules able to react or rate increased;	1	
		equilibrium:	forward and backward rates changes by the same amount;	1	
			hence concentration of reactants and products constant or yield unchanged;	1	
	(b)	heterogeneous: catalys	t in a different phase or state to that of the reactants;	1	
			ce where reactants adsorbed or attached or bond etc.; ction occurs or an explanation of what happens; sorbed)	1 1	
		-	ge surface area; uce cost or amount of catalyst;	1 1	
			l adsorbed; l not desorbed or site blocked;	1 1	
		(lead adso	orbed irreversibly scores both of these marks)		
	(c)	reaction slow as: both i	ons negatively charged or ions repel;	1	
		$2\mathrm{Fe}^{2+} + \mathrm{S}_2\mathrm{O}_8^{2-} \rightarrow 2\mathrm{Fe}^{2-}$	$^{3+} + 2SO_4^{2-}$ Species;	1	
			Balanced;	1	
		$2\mathrm{Fe}^{3+} + 2\mathrm{I}^- \rightarrow 2\mathrm{Fe}^{2+}$	$+ I_2$ Species ;	1	
			Balanced;	1	
					[17]
21.	(a)	(i) Heterogeneous:- Catalyst:-	In a different phase to reactants (1) Increases reaction rate (1) Alternative route or route described (1) Lower E_a (1)		
			Unchanged at end of reaction (1) Max 4		
		(ii) Feature:- QoL Equations	Variable oxidation states shown by vanadium (1) $V_2O_5 + SO_2 \rightarrow V_2O_4 + SO_3$ (1)		
			$2V_2O_4 + O_2 \rightarrow 2V_2O_5$ (1) 3	7	
	(b)	$\mathrm{VO_2}^+ + 4\mathrm{H}^+ + 3\mathrm{e}^- \rightarrow \mathrm{VO_2}^+$	V^{2+} (aq) + 2H ₂ O (1)		
		$Zn \rightarrow Zn$	$n^{2+} + 2e^{-}$ (given)		
		$2\text{VO}_2^+ + 8\text{H}^+ + 3\text{Zn} \rightarrow$	$3Zn^{2+} + 2V^{2+} (aq) + 4H_2O (1)$	2	
		Mol KMnO ₄ = $mv/100$	$0 = 0.0200 \times 38.5/1000 = 7.70 \times 10^{-4} (1)$		
		Mole ratio MnO_4^- to V	T(II) = 3:5 deduced		
		or equation			
		$5V^{2+} + 3MnO_4^-$	$+4H^{+} \rightarrow 2H_{2}O + 3Mn^{2+} + 5VO_{2}^{+}$ (2)		
		Mol V(II) = 7.70×10^{-10}	$4 \times 5/3$ (1) - 1 283 × 10 ⁻³		

22.		Iron Heterogeneous; catalyst in a different phase from that of the reactants	1 1	
		Poison; a sulphur compound (allow sulphur) Poison strongly adsorbed onto active sites/ blocked	1 1	
		Poison not desorbed or reactants not adsorbed or catalyst surface area reduced	1	[5]
23.	(a)	(Initially slow) because reaction is between two negative ions (or between two negative reactants or two negative species)	1	
		Which <u>repel</u> each other	1	
		Then Mn^{2+} (or Mn^{3+}) (ions) are formed acting as an <u>autocatalyst</u> (QOL mark) (or answer such as Mn^{2+} ions <u>formed in the reaction</u> act as a catalyst)	1	
		$2MnO_{4}^{-} + 16H^{+} + 5C_{2}O_{4}^{2-} \rightarrow 2Mn^{2+} + 8H_{2}O + 4CO_{2}$	1	
		$MnO_4^- + 4Mn^{2+} + 8H^+ \rightarrow 5Mn^{3+} + 4H_2O$	1	
		$C_2O_4^{2-} + 2Mn^{3+} \rightarrow 2Mn^{2+} + 2CO_2$ (Note these equations may gain credit if they have spectator ions and/or be written as half equations)	1	
	(b)	Active sites are where reactants are adsorbed onto a catalyst surface (or bind or react on a catalyst surface)	1	
		(do not allow a <u>b</u> sorbed)		
		(Number of active sites increases if) surface area is increased (or catalyst spread thinly)	1	
		(or on honeycomb)		
		(or powdered)		
		(or decreased particle size)		
		Active sites blocked by another species (or poison) (or species adsorbed more strongly)	1	
		(or species adsorbed irreversibly)		
		(or species not desorbed)		
		(Note, credit any answer that implies blocked but not just active site 'poisoned')		
		Sulphur (compounds) in Haber process (or lead in a catalytic converter)	1	
		(Note do not allow enzymes unless immobilised)		
				[10]

24. reactants brought together / increased concentration on surface (a) or increased collision frequency (1) reactants must be correctly orientated (1) reaction on the surface (1) products desorbed (1) example of a catalysed reaction (not a named process) (1) a suitable catalyst for this reaction (1) penalise incorrect second reactions and catalysts If absorption too weak reactants not brought together (1) e.g. silver (1) If adsorption too strong products not desorbed (1) e.g. tungsten (1) max 8 (b) Equations: $Cr_{2}O_{7}^{2-}$ +14 H⁺ + 6 Fe²⁺ \rightarrow 6 Fe³⁺ + 2 Cr³⁺ + 7 H₂O (1) $Zn + 2 Fe^{3+} \rightarrow Zn^{2+} + 2 Fe^{2+}$ (1) Method Titrate measured volume solution against $K_2Cr_2O_7$ (1) Reduce same volume solution with zinc (1) Filter off excess zinc (1) Titrate total Fe^{n+} using K₂Cr₂O₇ (1)

Percentage
$$\text{Fe}^{3+} = 100 \times (\text{titre2} - \text{titre1}) / \text{titre 2}$$

or equivalent (1)

25.
$$\operatorname{CrO}_{7}^{2^{-}} + 6\operatorname{Fe}^{2^{+}} + 14\operatorname{H}^{+} \rightarrow 2\operatorname{Cr}^{3^{+}} + 6\operatorname{Fe}^{3^{+}} 7\operatorname{H}_{2}O$$
 (2)
or two half equations, scores [2] if electrons cancel
(1) if electrons don't cancel

moles
$$\operatorname{Fe}^{2+} = \frac{24.0 \times 0.1}{1000} (\mathbf{1}) = 2.4 \times 10^{-3}$$

moles $\operatorname{Cr}_2 \operatorname{O}_7^{2-} = \frac{2.4 \times 10^{-3}}{6} (\mathbf{1}) = 0.4 \times 10^{-3}$
g (NH₄)₂Cr₂O₇ = 0.4 × 10⁻³ × 252 (\mathbf{1}) = 0.101 (g) (\mathbf{1})
g NH₄Cl = 0.223 - 0.101 (1) = 0.122 g (1)
mole ratio (NH₄)₂Cr₂O₇ : NH₄Cl
0.101 0.122

$$= \overline{252} : \overline{53.5} (1)$$

or 4×10^{-4}
= 1 : 5.7 (5.69 - 5.71) or 0.176 (0.175) (1)

[10]

7

Plan 5 marks 26. (a) known mass or weight (1) $H_2O(1)$ dil H_2SO_4 (1) (scores 2 if no H_2O previously) titrate or $\operatorname{Cr}_2 \operatorname{O}_7^{2-}$ in burette (1) indicator needed (1) $\frac{\text{Calc}^{n} \ 3 \ \text{marks}}{6 \ \text{Fe}^{2+} + \text{Cr}_2 \text{O}_7^{\ 2-} + 14 \text{H}^+ \rightarrow 6 \text{Fe}^{3+} + 2 \text{Cr}^{3+} + 7 \text{H}_2 \text{O} \ \textbf{(1)}}$ calc moles $Cr_2O_7^{2-}$, moles $Fe^{2+} = 6 \times moles$ (1) $Cr_{2}O_{7}^{2-}$ g Fe^{2+} = moles $Fe^{2+} \times Ar(\underline{or} 56)$ \div by starting mass, $\times 100 = \%$ (1) 8 V_2O_5 catalyst (1) (b) (i) alternative route or V changes oxidation state $\underline{\text{or}}$ lower activation energy (1) $\begin{array}{c} V_2O_5+SO_2 \rightarrow V_2O_4+SO_3 \ (1) \\ (2VO_2) \end{array}$ or in words $V_2O_4 + \frac{1}{2}O_2 \rightarrow V_2O_5$ (1) $Mn^{2+} \lor$ catalyst (1) (ii) none or little present initially \therefore slow or 2 negative ions reacting (1) more as reaction proceeds \therefore faster (1) autocatalysis (1)

or explanation of

Max 7

27.	(a)	Ag or Au or Sc adsorb too weakly (1) A consequence of weak adsorption reactants not brought together on the surface no increase in reactant concentration on surface bonds not weakened correct orientation on surface not achieved (1)		
		 W, Zr, Nb, Mo, Hf or Ta adsorb too strongly (1) A consequence of strong adsorption products not desorbed active sites blocked reactants unable to move on catalyst surface (1) 	4	
	(b)	 Powder has a much greater surface area (1) Reduces amount of expensive catalyst needed (1) Makes it easier to remove spent catalyst from reactor (1) Increases supply of reactant to catalyst surface or increased collisions with catalyst (1) Makes reaction faster as surface area greater (1) Makes it easier to remove product from catalyst surface (1) 	Max 4	
	(c)	A process with the appropriate catalyst (1) The appropriate catalyst poison (1) Blocks active sites or reduces surface area for reaction (1) Poison firmly held or irreversibly adsorbed or not released (1)	4	
	(d)	Both ions are negatively charged or same charge (1) Fe^{2+} is converted to Fe^{3+} by the persulphate ion (1) Fe^{3+} then reacts with iodide ions to form iodine. (1)	3	[15]

28. *observations*: \rightarrow <u>not</u> ppt green (1) \rightarrow blue (1) (a) (i) explanation: reduction (1) to Cr (III) or $[CrCl_2(H_2O)_4]$ + or Cr^{3+} (1) to Cr(II) or $[CrH_2O_6]^{2+}$ or Cr²⁺ (1) (ii) observations: \rightarrow blue (1) \rightarrow green (1) \rightarrow violet (1) explanation: reduction (1) to V(IV), V(III), V(II) or VO^{2+} , V^{3+} , V^{2+} (1) 10 (b) (i) same phase (1) speeds rate (1) new route (1) of lower AE (1) unchanged at end (1) TMs use variable $oxid^n$ states (1) *example*: Fe^{2+}/Fe^{3+} in S₂O $\frac{2^{-}}{8}/I^{-}$ rn (1) or Mn 2+ in MnO $\frac{1}{4}$ /C2O $\frac{2}{4}$ mechanism: $2Fe^{2+} + S_2O_8^{2-} \rightarrow 2SO_4^{2-} + 2Fe^{3+ \text{ or }}MnO_4^-$ oxidises $\operatorname{Fe}^{3+} + I^- \rightarrow \operatorname{Fe}^{2+} + \frac{1}{2} \operatorname{I}_2 \operatorname{\underline{or}} in \text{ words}$ (1) or $Mn^{2+} \rightarrow Mn^{3+}$ $\mathrm{Mn}^{3+} + \mathrm{C}_{2}\mathrm{O}_{4}^{2-} \rightarrow \mathrm{CO}_{2}$ $+Mn^{2+}$ reagents mixed with and without Mn^{2+} (1) (ii) (must be correct if stated, not MnO_{4}^{-}) time taken for stated observation (1) correct observation e.g starch \rightarrow black colorimeter, brown colour (1)time shorter if Mn^{2+} catalyses (1) 12 $V_2O_5 + SO_2 \rightarrow V_2O_4 (\underline{or} \ 2VO_2) + SO_3$ (1) (c) (i) moles MnO₄⁻ = $\frac{25 \times \cdot 02}{1000} = 5 \times 10^{-4}$ (1) (ii) moles VO²⁺ = $5 \times 5 \times 10^{-4}$ (1) (2.5 × 10⁻³) = moles VO₂ (1) $= 83 \times 2.5 \times 10^{-3}$ (1) mass VO₂ (1) % VO₂ = $\frac{83 \times 2 \cdot 5 \times 10^{-3}}{0 \cdot 3} \times 100$ (1) = 69.2 (1) 8

[30]